
A Very Simple PTS160-based JT Mode Beacon
By Roger Rehr, W3SZ 4-3-2024

1. This paper describes using a PTS (Programmed Test Sources) synthesizer either directly or as a
signal to be either multiplied or mixed or both to provide a higher frequency JT mode beacon. In this
example we will create a Q65-60C beacon using a PTS-160, but the method applies generally to the JT
modes and submodes and can be used with PTS synthesizers other than the PTS-160 with just slight
modifications of the code used to control the PTS synthesizer. In those cases where frequency
multiplication of the PTS signal is used the code will adjust the frequency spacing of the JT-mode
tones so that tones will have the appropriate frequency spacing after frequency multiplication. In any
case, the frequency resolution of the PTS synthesizer used will need to be sufficient to accommodate
the tone spacing of the JT mode being used.

2. Our method starts with the creation of an "itone" file for the desired mode and message. An itone
file is a time-ordered list of the message tones sent during one T/R cycle, with the tone values ranging
from 0 to x where x is one less than the number of different tones that the mode uses. For Q65, this
number is of course 64. The length of this list, termed the symbol length, is the number of tone
intervals that are used by the mode in sending a message, and for Q65 this is 85.

3. The WSJT-X distribution’s set of files contains a command-line executable file named q65code.exe.
This file uses the command structure

q65code.exe "message" > itones_Q65.txt
to generate an itone file named itones_Q65.txt containing the itones representing the given message.
An example of such a file is here, for the message "W3SZ/B FN20AG":

-----file begins-----
 Generated message plus CRC (90 bits)
6 bit : 27 2 41 42 6 43 61 45 27 24 19 54 0 4 10
binary:
01101100001010100110101000011010101111110110110101101101100001001111011000000000010
0001010

 Codeword with CRC symbols (65 symbols)
 27 2 41 42 6 43 61 45 27 24 19 54 0 4 10 4 44 6 0 43
 43 51 28 4 48 32 13 39 23 59 49 49 62 22 5 13 38 17 20 20
 32 60 55 53 3 42 38 44 51 14 15 41 41 5 27 5 30 7 53 54
 19 8 34 32 18

 Channel symbols (85 total)
 0 28 3 42 43 7 44 62 0 46 28 0 0 25 0 20 55 1 5 45
 7 0 0 1 44 0 0 44 52 29 5 49 0 33 0 14 40 0 24 60
 50 50 63 23 6 0 14 39 18 0 21 21 33 61 0 56 54 4 43 0
 39 0 45 52 15 0 16 42 0 42 6 28 6 0 31 0 8 54 55 20
 9 35 33 19 0
-----file ends-----

All we need from this file for our purpose is the 85 channel symbols, in csv format. Each element of
this set of channel symbols represents the frequency offset of a given itone from the base frequency,
with that offset specified by the individual list value times the tone spacing. In the case where there is
to be no frequency multiplication of the PTS-160 signal, and if the tone spacing is 0.75 Hz, the first

tone in the above list would be offset by 0 Hz, the next tone offset by 0.75 * 28 = 21 Hz, etc. If the
PTS frequency were to be multiplied by 9, then the tone spacing for the signal generated by the PTS in
this case would need to be 0.75 / 9 = 0.0833333 Hz so that after frequency multiplication the spacing
would be the required 0.75 Hz.

As was noted in the first paragraph above, the synthesizer resolution needs to be adequate for the tone
spacing of the mode being used. Tone spacings of the various JT modes are given in tables 7 thru 9 of
the WSJT-X 2.7.0-rc4 user guide at https://wsjt.sourceforge.io/wsjtx-doc/wsjtx-main-2.7.0-
rc4.html#SLOW_MODES. The tone spacings for the various Q65 submodes are shown the table
below:

T/R Period
(s)

A Spacing
(Hz)

B Spacing
(Hz)

C Spacing
(Hz)

D Spacing
(Hz)

E Spacing
(Hz)

15 6.67 13.33 26.67 N/A N/A
30 3.33 6.67 13.33 26.67 N/A
60 1.67 3.33 6.67 13.33 26.67
120 0.75 1.5 3 6 12
300 0.29 0.58 1.16 2.31 4.63

PTS Synthesizers can be obtained with resolutions from 0.1 Hz to 100 kHz. Although the PTS product
code, which is affixed to the rear panel of every PTS synthesizer, indicates the resolution of the PTS
synthesizer at the time of sale, many of the synthesizers available today have been modified and so the
actual resolution of any given synthesizer may be either worse than or better than that indicated by the
product code. For example, for a PTS synthesizer with product code 160M7O1C, the “7” indicates that
the synthesizer has 0.1 Hz resolution as you can see in the table below:

You can see from the above that while a synthesizer with a resolution of 1 Hz should be adequate for
Q65-60C which has tone spacing 6.67 Hz, that if the PTS signal frequency is being multiplied by 9,

https://wsjt.sourceforge.io/wsjtx-doc/wsjtx-main-2.7.0-rc4.html#SLOW_MODES
https://wsjt.sourceforge.io/wsjtx-doc/wsjtx-main-2.7.0-rc4.html#SLOW_MODES

then the resulting 9 Hz resolution at the multiplied frequency would be inadequate. For this project I
used a spare PTS-160 that I had on hand, with product code 160SKO20. The above table shows that
the “K” signifies that this unit has a DDS synthesizer with 0.1 Hz resolution, so it would be adequate
for creating a Q65-60C beacon even with relatively large frequency multiplication factors.

4. The channel list output produced by q65code.exe is not in csv form and it contains extraneous
information, so this data needs to be slightly modified to the following format so that we can use it with
the code that we have written:
0,28,3,42,43,7,44,62,0,46,28,0,0,25,0,20,55,1,5,45
,7,0,0,1,44,0,0,44,52,29,5,49,0,33,0,14,40,0,24,60
,50,50,63,23,6,0,14,39,18,0,21,21,33,61,0,56,54,4,43,0
,39,0,45,52,15,0,16,42,0,42,6,28,6,0,31,0,8,54,55,20
,9,35,33,19,0

This formatting can be done relatively easily. using either a text editor or spreadsheet software to
replace spaces with commas. CSV-format itone files which can be used directly without reformatting
can also be produced by a suitably modified version of WSJTX or by a separate program.

5. Once the itones file has been suitably formatted, we can use it with my C# program itone2freq to
generate a frequency list that can then be used by an SBC such as an Arduino or by a Raspberry Pi or a
Windows-based computer to control a PTS so that it sends a Q65 (or other JT-mode) message
repeatedly. Initial testing was done with the Arduino platform, and the code was subsequently ported
to python3 and C# so that a variety of hardware platforms can be used for this purpose.

6. info2freq takes as user input the following parameters:
Mode
Submode
T/R Period (seconds)
Base Frequency (Hz)
Multiplier (Integer)
ITone directory (input; file name must be of the form “itones_XXX.txt” where XXX is the mode)
Freq File directory (output)

Mode, Submode, and T/R Period are selected by pull-down menus.
Base Frequency (in integer Hz) and Multiplier (an integer) are supplied by the user via text boxes.
The two directories are selected using the standard Windows FolderBrowserDialog routine.
The itone file must be named “itones_XXXXXX.txt” where “XXXXXX” is the mode name, such as
"Q65", "FT8", "JT9", "JT65", etc, as the program uses the file name to select which itone file in the
selected folder is used for the current calculation. The set of acceptable values for “XXXXXX” is the
same as the set of modes contained in the mode pull-down list. The GUI for this program is shown
below:

The Arduino platform was used for initial testing, and the Arduino sketch that I initially wrote expects
the frequency list to be an array of 85 strings, with each string having length 10 and with each string
providing the frequency value for that tone in tenths of a Hz, expressed as an integer. So a frequency
of 144.290 MHz would be given as “1442900000”, for example. My program itone2freq generates this
frequency list needed by the Arduino when the button labeled “Make Decimal Freq File” is clicked.

Lets look at an example using a base frequency of 144033333.3 MHz. If we want to use the PTS to
create a 2M beacon at this frequency, then we would run itone2freq with selections for mode Q65-60C
and base frequency 144033333.3 Hz and multiplier 1. The frequency file generated by the program
will be named FreqFile_Q65-60C_85_0.600_144033333.3_1.csv and contain the following values:

"1440343333","1440345200","1440343533","1440346133","1440346200","1440343800","144034626
6","1440347466","1440343333","1440346400","1440345200","1440343333","1440343333","1440345
000","1440343333","1440344666","1440347000","1440343400","1440343666","1440346333","14403
43800","1440343333","1440343333","1440343400","1440346266","1440343333","1440343333","144
0346266","1440346800","1440345266","1440343666","1440346600","1440343333","1440345533","1
440343333","1440344266","1440346000","1440343333","1440344933","1440347333","1440346666"
,"1440346666","1440347533","1440344866","1440343733","1440343333","1440344266","14403459
33","1440344533","1440343333","1440344733","1440344733","1440345533","1440347400","144034
3333","1440347066","1440346933","1440343600","1440346200","1440343333","1440345933","1440
343333","1440346333","1440346800","1440344333","1440343333","1440344400","1440346133","14
40343333","1440346133","1440343733","1440345200","1440343733","1440343333","1440345400","
1440343333","1440343866","1440346933","1440347000","1440344666","1440343933","1440345666
","1440345533","1440344600","1440343333"

The frequency file name specifies, in order and separated by the underscore character '_' the following:
mode and submode: Q65-60C
symbol set length: 85
symbol duration: 0.6 (seconds)

base Frequency: 144033333.3 (Hz)
multiplier (1)

The frequency file filename provides easy access to the values of the symbol set length and symbol
duration used in the Arduino sketch and makes it easy to put these values into the sketch when updating
it.

If we use the same base frequency but with a multiplier of 9, this would create a beacon signal placed
at 1296.300 MHz which is of course (within 1 Hz) equal to 144033333.3 * 9 Hz. The base tone of the
Q65 signal will have an audio frequency of 1000 Hz with the receiver set to 1296.300 MHz and tone
spacing at 1296.300 MHz will be appropriate for Q65-60C. In this case the output file will be named
FreqFile_Q65-60C_85_0.600_144033333.3_9 and the contents will be:

"1440334443","1440334650","1440334465","1440334754","1440334762","1440334495","144033476
9","1440334902","1440334443","1440334784","1440334650","1440334443","1440334443","1440334
628","1440334443","1440334591","1440334850","1440334450","1440334480","1440334776","14403
34495","1440334443","1440334443","1440334450","1440334769","1440334443","1440334443","144
0334769","1440334828","1440334658","1440334480","1440334806","1440334443","1440334687","1
440334443","1440334547","1440334739","1440334443","1440334621","1440334887","1440334813"
,"1440334813","1440334910","1440334613","1440334487","1440334443","1440334547","14403347
32","1440334576","1440334443","1440334599","1440334599","1440334687","1440334895","144033
4443","1440334858","1440334843","1440334473","1440334762","1440334443","1440334732","1440
334443","1440334776","1440334828","1440334554","1440334443","1440334562","1440334754","14
40334443","1440334754","1440334487","1440334650","1440334487","1440334443","1440334673","
1440334443","1440334502","1440334843","1440334850","1440334591","1440334510","1440334702
","1440334687","1440334584","1440334443"

7. This data is inserted into an Arduino sketch written by me (named PTS_LO_LeadsParalleled.ino)
that varies the PTS output frequency appropriately in order to produce each of the 85 Q65 tones
required for a complete Q65-60C message.

8. Because the start of each JT-mode message must be accurately timed to the beginning of each
minute, the Arduino also needs GPS input in order to start each message sequence appropriately at this
time. This GPS timing is provided by a Goouuu Tech GT-U7 GPS module, which can be obtained on
Amazon for less than $15.00.

9. Although the Arduino program uses the GPS signal to initiate the message at the start of each
minute, the program uses the “millis” parameter produced by the Arduino for more accurate timing
within the Q65 message. This avoids the need to repeatedly read and process the time message from
the GT-U7 during message transmission. The millis parameter is an unsigned long integer, and
represents the number of milliseconds that have elapsed since the Arduino was started. As the largest
possible value for an unsigned long integer on the Arduino is 4,294,967,295, this number will “roll
over” every 47.71 days. When that happens, the Arduino will send the message “reset” in frequency-
shift-keyed Morse code and then return to usual operation.

10. The PTS160 requires BCD (Binary Coded Decimal) frequency input. The Arduino sketch takes
care of converting the decimal frequency input to BCD and then sends the BCD data to the 50-pin
Centronics female jack on the back of the PTS-160. The frequency control inputs to the PTS-160 are
somewhat complicated, as is shown in the diagram below:

Each decimal frequency digit corresponds to 4 BCD input pins on the PTS-160 synthesizer, except that
the 10 MHz digit is treated as Hexadecimal, in order to cover frequencies up to 150 MHz with a single
set of 4 pins. For PTS-synthesizerss covering frequencies above 160 MHz, the 10 MHz digit uses the
same BCD format as the less significant decimal digits, and there is in addition a 100 MHz digit which
uses the same format. There are 4 latch pins, each of which (except for the 10 MHz latch pin in the
case of the PTS-160 model) is shared by two decimal digits. This makes it possible to reduce the
number of Arduino BCD output pins from 9 x 4 = 36 to just 8 pins (plus the latch pins and ground) by
paralleling the 0.1 Hz, 10 Hz, 1 kHz 100 kHz, and 10 MHz PTS pins for each BCD digit and similarly
paralleling the 1 Hz, 100 Hz, 10 kHz, and 1MHz PTS pins (and also the 100 MHz pin for synthesizers
covering frequencies above 160 MHz) for each BCD digit. With this scheme, in order to enter the
BCD data for a particular decimal digit into the PTS, the 4 BCD ports on the Arduino that are
associated with that decimal digit are set to their appropriate values for that decimal digit and then the
latch for that decimal digit is briefly strobed to enter the data into the PTS for that decimal digit. The
BCD values for the next decimal digit are then placed into the appropriate 4 BCD ports on the Arduino
and the latch for that decimal digit is briefly strobed to enter that data into the PTS. This is repeated for
each decimal digit until the PTS has been fully programmed for the given frequency. Note that the
PTS uses negative logic, so to provide the BCD digit for 7, for example, the Arduino pins must be set
to 0,0,0,1 and NOT 1,1,1,0. The latch is briefly strobed to 1 (and not 0) in order to enter the data into
the PTS-160, with the latch signal remaining at zero between these data entry events. Pin 42 of the
PTS also needs to be grounded to either pin 50 or pin 21 of the PTS and the this ground needs to be
connected to one of the Arduino’s GND pins. The appendix contains the details of the connections
between the Arduino and the PTS as required by my Arduino sketch code (named
PTS_LO_LeadsParalleled_160.ino).

The Arduino has no problem driving the PTS when wired in this fashion, and no buffers or pull-up
resistors are required between the Arduino and the PTS-160.

11. I had first used the PTS Synthesizers for amateur radio purposes in the 1990s when I made them

the basis of my first EME receiver, and I had saved the wiring harness that I made up at that time so for
this project I just reused that harness. This meant that I didn’t need to wire a new 50-pin connector, nor
parallel once again the 9 wires for each BCD digit, etc. as all of this had already been done.

There is a nice alternative to tediously wiring directly to the PTS-160 parallel port. W8BL, Bill
Luyster, has made available a USB interface for the PTS units that allows one to entirely avoid this
odious wiring. Bill’s description of his USB interface and ordering information are both at the URL
https://www.w8bl.com/pts-interface/ . I have modified my Arduino-parallel-port beacon software to
create a version that uses Bill’s interface with the Arduino hardware platform and I have also ported
this code to C# on Windows and to a python3 script that runs nicely on a Raspberry Pi 4 as well as on
Windows. The PTS-160 beacon of course runs just as well on these platforms with Bill’s USB
interface as it does with the original Arduino/parallel port setup. In all cases the computer time is GPS
aligned so that the WSJT-X sequences begin at the appropriate times.

Left-clicking the button labeled “Make Hex String W8BL File” on my info2freq GUI will generate a
text file containing the hex values that can be used by my python3 file w8bl_pts_hid.py to control the
PTS using the W8BL USB PTS interface by cutting and pasting the contents of this file into the
appropriate spot in my code. After changing “[“ to “{“ and “]” to “}” this hex value file can also be
used with my Arduino W8BL PTS USB interface code.

You can see the original parallel port wiring as well as the Arduino MEGA2560 that I used in the
image below:

https://www.w8bl.com/pts-interface/

The tiny circuit board with a glowing red LED just above the upper right corner of the Arduino MEGA
2560 is the Goouuu GT-U7 GPS board. This amazing little board gets GPS lock within seconds even
with its tiny patch antenna sitting on top of one of my video screens in my shack and hidden from the
outside world by mostly closed aluminum Venetian blinds. You can see this tiny antenna, rotated 90
degrees from its proper attitude but still working nicely in the image below:

The image at the top of the next page shows the rear of the PTS-160 with the 50-pin Centronics jack:

The image shown below is of Bill’s interface attached to the Centronics port.

The image below shows the PTS160 beacon signal generated by this method using a multiplication
factor of 1 as displayed and decoded by WSJT-X. This and subsequent images were made using the
original Arduino-parallel-port system, but the results obtained with the W8BL interface with the three
platforms using it are identical.:

The series of images below show the results when frequency multiplication is used. For this
demonstration the PTS-160 described above was used with a base frequency of 100 MHz and a
DownEastMicrowave MicroLO board was used to frequency multiply this signal. A frequency list
using this base frequency was generated by the method described above using a multiplier of 15 (giving
a target frequency of 100 * 15 = 1500 MHz) and loaded into an Arduino MEGA 2560 which was used
to control the PTS-160. The signal was received by an SDRPlay RSP1a at the fundamental frequency
and at frequencies up to the 15th harmonic, 1500 MHz. Signal levels at higher harmonics were below
the threshold for detection. The audio output of the RSP1a was supplied to an instance of WSJT-X
2.7.0-rc4 set to receive Q65-60C signals.

The first image below shows the PTS-generated tones at the fundamental frequency, 100 MHz. You
can see that at the fundamental frequency the tone spacing and the total signal bandwidth are much
smaller than expected for the Q65-60C mode, the bandwidth of which is indicated by the red bracket

extending from approximately 1200 to 1600 Hz. Of course, at the fundamental frequency the spacing
and total bandwidth are one fifteenth of their expected values:

The next image below shows the eighth harmonic, at 800 MHz. The tone spacing and total bandwidth
are greater than they were at the fundamental frequency, and are now 8/15 (0.53) of their expected
value:

The final image, shown below, gives the result at the fifteenth harmonic, 1500 MHz, which was our
“target” frequency given that we used a multiplier of 15 when we generated the frequency file. You
can see that the tone spacing appears to be as expected for Q65-60C, and that the beacon message
consistently decodes correctly when received at 1500 MHz:

Summary. This project describes the use of a PTS-160 synthesizer as a JT-mode beacon. The
synthesizer can either be used without multiplication, or with multiplication (or with multiplication and
mixing) to achieve a higher beacon frequency. When multiplication is used, the software described
adjusts the spacing of the JT tones so that after multiplication they will have the proper spacing for the
chosen JT mode and submode at the actual beacon frequency. The project requires in addition to a PTS
synthesizer only an Arduino such as the MEGA2560 used here and a GPS module such as the Goouuu
GT-U7 used here. An Arduino MEGA 2560 is currently priced at $17.99 at Amazon, and the GT-U7 is
priced at $14.99 there. Depending on the frequency selectivity of the antenna used, some filtering
might be needed to attenuate unwanted harmonics.

Alternatively, the Arduino or a Raspberry Pi or a Windows computer can be used with Bill W8BL’s
USB PTS interface. To use the Arduino with the W8BL PTS-USB interface you will also need a
compatible USB Host Shield such as the ATNSINC-brand shield available from Amazon at the link:
https://www.amazon.com/dp/B08PNVKKBH . Additional details regarding the use of this Arduino
shield are given in the comments contained in my code for the Arduino in the file
Arduino_PTS_W8BL_Interface.ino.

The C# program which generates the frequency files and the original parallel port Arduino sketch are
available on request, as are my Arduino, C#, and python3 code for use with W8BL’s excellent USB
PTS interface. Arduino, Linux, and Windows hardware platforms are all supported with the W8BL
PTS-USB interface.

©2024 Roger Rehr W3SZ

Appendix 1. Interconnections between the Arduino MEGA 2560 and PTS-160 for the Arduino
sketch as written.

Arduino Pin Centronics Pins

15 15,13,9,5,1

16 16,14,10,6,2

40 40,38,34,30,26

41 41,39,35,31,27

43 11,7,3,17

44 12,8,4,18

49 36,32,28,19

45 37,33,29,20

47 47

46 46

25 25

24 24

23 23

GND 42,21

https://www.amazon.com/dp/B08PNVKKBH

Appendix 2 GPS Hardware.

As noted above, the GPS unit used with the Arduino is the Goouuu GT-U7 GPS board. For both the
Linux-based Raspberry Pi 4 and for the Windows platforms the GPS unit used is the VK-162 G-Mouse
GPS Dongle which, like the Goouuu unit, is available from Amazon. A good description of how to set
up the VK-162 with the Raspberry Pi is given by G4WNC, Mike Richards at the URL
https://photobyte.org/raspberry-pi-stretch-gps-dongle-as-a-time-source-with-chrony-timedatectl/

When running on the Windows operating system, I use GPS2Time, by VK4ADC. It is available at the
URL https://vk4adc.com/web/index.php/vk4adc-utilities/gps2time

Note that VK4ADC and some others have had some bad luck with some of the VK-162s that they have
purchased.

©2024 Roger Rehr W3SZ

https://vk4adc.com/web/index.php/vk4adc-utilities/gps2time
https://photobyte.org/raspberry-pi-stretch-gps-dongle-as-a-time-source-with-chrony-timedatectl/

